Model selection for generalized estimating equations accommodating dropout missingness.
نویسندگان
چکیده
The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.
منابع مشابه
A Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout
Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...
متن کاملPattern Mixture Models for Quantifying Missing Data Uncertainty in Longitudinal Invariance Testing
Many psychology applications assess measurement invariance of a construct (e.g., depression) over time. These applications are often characterized by few time points (e.g., 3), but high rates of dropout. Although such applications routinely assume that the dropout mechanism is ignorable, this assumption may not always be reasonable. In the presence of nonignorable dropout, fitting a conventiona...
متن کاملPseudo-likelihood Estimation for Incomplete Data
In statistical practice, incomplete measurement sequences are the rule rather than the exception. Fortunately, in a large variety of settings, the stochastic mechanism governing the incompleteness can be ignored without hampering inferences about the measurement process. While ignorability only requires the relatively general missing at random assumption for likelihood and Bayesian inferences, ...
متن کاملA marginalized pattern-mixture model for longitudinal binary data when nonresponse depends on unobserved responses.
This paper proposes a method for modeling longitudinal binary data when nonresponse depends on unobserved responses. The proposed method presumes that the target of inference is the marginal distribution of the response at each occasion and its dependence on covariates, and can accommodate both monotone and non-monotone missingness. The approach involves a marginally specified pattern-mixture m...
متن کاملA Mixture Dropout Mechanism in a Longitudinal Study with Two Time Points: a Methadone Study
One of the most important issues that confront statisticians in longitudinal studies is dropouts. A variety of reasons may lead to withdrawal from a study and produce two different missingness mechanisms, namely, missing at random and non-ignorable dropouts. Nevertheless, none of these mechanisms is tenable in most studies. In addition, it may be that not all of dropouts are nonignorable. Many ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 68 4 شماره
صفحات -
تاریخ انتشار 2012